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The Intensification of Magnetic Fields in Phasmas

R. K. Jaggl

Figure Captions.

1.

6

The deformed contour im the S-plane used to integrate the
expression In equation (25).

Graph of H (Right hand side of equation 27) versus Z, U

for some values of T, and Z respectively.

Graph of V_ (2>0), V_ (2<0) (Right hand side of equation

28) versus Z, § for some values of T and Z respectively.
Graph of E_* (Z70), E_(2¢0) (Right hand side of equation

29) versus Z, T, for some values of T and Z respectively.
Graph of H {Right hand side of equation 33) versus Z, T

for some values of T and Z respectively.

Graph of E__(Right hand side of equation 34 upper sign) versus
Z, T for some values of -, , Z respectively.

Gravh of E + (Right hand side of equation 35 lower sign) versus

Z, T for some valu=s of T , Z respectively.
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Magnetohydrodynamic equations are used to obtain the solution to
the problem of intensification of the magnetic field in an infinite
plasma containing a uniform magnetic field by a motion of the
semi-infinite plasma perpendicular to the field. Self consistent
solution of the problem shows that a finite amount of magnetic field
is produced in the direction of motion of the plasma. When the
velocity of the medium is independent of time the magnetic field

produced in the direction of motion is proportional to /'t and any

amount of magnetic field can be produced. ya



The Intensification of Magnetic Fields in Plasmas

R. K. Jaggi
Theoretical Division
Goddard Space Flight Center
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The problem of the intensification of magnetic fields through
the motion of a plasma already containing a magnetic field has
important applications. In the sun the magnetic field of the
sunspots and of bipolar magnetic regions may be produced in this
wayl’a. In the laboratory strong induction currents and associated
magnetic fields are produced by shooting a beam of plasma transverse
to a magnetic fieldB.

We shall consider two examples in which the plasma motion is
initially perpendicular to the magnetic field and obtain expressions
for the magnetic field produced in the direction of motion and the
induced electric field produced perpendicular to both the given
magnetic field and the velocity.

We shall use the magnetohydrodynamic equations for an

incompressible medium of finite electrical conductivity:
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where p, f , U, J, B stand for the pressure, density, velocity
vector, electric current and the magnetic field, @ is the elec-
trical conductivity of the plasma.

In the first problem, we consider a uniform plasma occupying
inifinite space in the presence of a uniform magnetic in the z-

direction (cartesian coordinates will be used.) A velocityl’?x =lbe(z)

[where I(z) =1, for z < o, I(z) = o for z > o] 1s switched on
suddenly at t = o. We shall solve this initial value problem

and obtain & solution for all z and for t > o. Due to symmetry

in the problem all quantities are functions of only the z coordinate
(independent of x, y) and t. Equations (2), (4) immediately

show that if 173, Bz are the velocity and the magnetic field

in the z direction

Vs

B3

constant (Independent of z) (6)

constant (Independent of z) (7)



Equations (1), (3), (5) now yield in cartesian coordinates
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The initial conditions of the problem are:
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At t = 0; (-55 = @ follows from (9).We can therefore zszume

V3 = o. From equation (11) we find that B3 = BO is the only
solution satisfying equation (7).

Now using the dimensionless quantities
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Equation (8) - (10), (12) become

AV ) oM
5'.;'“‘ 9%
P 2l =0
[ P+ W]
% o_w , 2K
2T - 9%

>H

We shall solve equation (15), (17), (18) subject to the initial
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conditions H = o, V = I(Z); BV/QZ - - s(z) (the

Dirac delta function). These give b"/ 31:)1:5. = - S(Z)

from (17). We define the Laplace transform of V, H, E as
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and obtain from (15), (17)
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Eliminating V from (20), (21) we get
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Now defining the Fourier transform of H by
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Taking the inverse Laplace transform we obtain
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where € = P,_(s) is a positive quantity. To evaluate this
integral we deform the contour in the s-plane as shown in figure 1.
The integral along the complete contour S is made up of contribu-
tions labelled as C;, Cp, Cs, C'Z and Cll in figure 1. Since

s = o is the only pole, the integral taken along the closed. contour




is equal to 2 WLl +times the residue at s = o, which equals

- | / 2 A . The integral along Cy, C1' approaches zero as

the radius of C;, Ci' —» =, The integral along C, + Cx' yields
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The contribution along Cs approaches e |2| é as the

radius of Cs approaches zero (See appendix I). We, therefore,

obtain for H the expression
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Similarly we obtain
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where the upper sign applies for z > o and the lower sign for
Z < O

After a sufficiently long time the last two terms in each
of the equations (27), (28), (29) disappear and we obtain a uni-
form magnetic field — (l ( 2)) along x-axis. The complete infinite
medium moves with veloecity of half the initial veloclty of the semi-
infinite medium and there is a uniform electric field (U. B. /z‘q)ll\
the y direction.

Figure 2 shows a graph of H versus z, © for some values of
T, z respectively. Similarly figures 3, 4 show some graphs of
v(z), v(T) and E(z), E(T ) respectively.

Let us now consider the case in which an external force
acts ‘on the semi-infinite medium z <« 0 and keeps it moving at a
constant velocity vpo while the semi-infinite medium z > o is
held fixed. In this case the solution for the magnetic field
is obtained by using equation (17) and then E is obtained from
(18), According to our assumption V(z) = I(z), and equation (17)

yields
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Using the Fourier Laplace transforms as before we obtain from
equation (30)
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Taking the inverse Laplace transform we obtain
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Using asymptotic expansion of the error function, in the

1imit IZ' ﬁ; << | we obtain from (33)
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For the case of sun (’I el 16- €. m W yging
o

U, w0 Iohc-mS//Aa,, t = ‘ol' Aeed ve obtain B; ~ 2000

gauss. Thus it is possible to produce very strong magnetic fields

as a result of plasma motions perpendicular to a given magnetic field.
Figure 5 shows a graph of Hy versus z, T for some values of

T ,z respectively. Figures 6, T show graphs of E (z), E (T)

and E+(z), .E+('C) respectively.
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Discussion

The second example of this paper shows that in a plasma
containing a magnetic field, a differential motion perpendicular
to the field can produce large intensification of the magnetic
field. The differential motion considered in this paper is of the
form of a discontinuous Jjump. The magnitude of intensification will
probably decrease 1f one considered a slow gradlent in velocity.

In order to solve a problem which will be applicable to
sunspots one has to consider a finite size blob of plasma moving
perpendicular to a magnetic field. If one solves such a problem
cne finds that the blob comes to rest in a short time unless an
external force continues to push it in its direction of motionf
The assumption of constant velocity of the blob therefore needs
Justification . Unless one takes into account a force such as that
of buoyancy, as done by Parker? it is not clear how a pair of sunspots

2
can be produced by the process considered by Romanchuk .

* This result and some others will be published in a sequel
to this paper.




Appendix I

Consider the integral (26)
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Taking the limit g — we obtain
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